Beam Loss Monitor Upgrade

J. Lewis
All Experimenters' Meeting
2 May 2005

Motivation

• Don't do this again.

Loss profile: Tokyo-pot 16-house quench

Response: Abort Upgrade

- New Loss Monitor electronics
 - Abort logic designed for collider operations
 - Improved diagnostic capabilities
- Improvements to QPM
 - Faster response
 - Running many months
 - Ask the Tevatron guys for details

Further Motivation

- Scope broadened to improve high-intensity proton operations
- Tevatron
 - Protect magnets from beam-induced quenches
 - Legacy system is not sufficiently flexible to use during complex operations cycle
 - Designed for fast-cycle fixed-target operations

Main Injector

- Greater diagnostic capability needed for high-intensity operation
 - Limit activation of accelerator components
 - Intensity 5x greater with NUMI operation
 - Maximize proton flux

Booster

- Improved diagnostics
 - Limit activation
 - Maximize flux

Existing System Characteristics and Limitations

Signal properties

- Good resolution and dynamic range
- Fast leading edge response, slow discharge

Tevatron Aborts

- Fast: $\sim 50-100$ μs
- Fires on single channel over threshold
- Minimal compatibility with multiple machine configurations
 - Two abort levels, high and low field
 - Abort disabled when antiprotons are in the machine

Read out

- Updates slowly: ~ 3 ms period
- Fast access to one channel per chassis
 - 24 signals multiplexed in MI

Difficult to enhance and maintain

- 23 years old
- Read out via Multibus(!) with obsolete software

Requirements for New System

- Robustness: No false aborts
- Reliability: No missed aborts
- Respond to changing machine configurations
- Access to data from all channels
- Maintain resolution
 - System designed around low-noise integrator
- Large dynamic range
 - 0.02 Rad/s in 1 ms to 100 Rad in a single turn
- Good time resolution and depth
 - Multiple integration periods, each with >4k sample history
- Include experiments in Tevatron BLM system
 - Two Camac crates with special electronics hard to maintain

System Overview

- Integrate BLM current and digitize every ~20 μs
 - Tevatron turn frequency or MI frequency ÷2
- Form three running sums for additional integration periods
 - Programmable time constants
 - Example: 1ms, 50ms, 1s
 - Maintain history of >4000 cycles for each period
 - Also 8k injection turn-by-turn
 - Also record integrated loss through each MI cycle
- One abort threshold per integration period for each channel
- Abort requirements changed in response to machine states
 - Thresholds, masks, multiplicities
- Safe operation
 - Isolated from VME and Ethernet
 - Embedded microprocessor
 - Custom local bus on J2

Components

Digitizer Card

- 4 integrator channels
 - Deadtimeless operation
- Form running sums
- Compare to thresholds
- Raw data buffers
- Max 15 per crate

Timing Card

- Provides synchronous clock
- Keeps time buffers
- Decodes machine clock events

High Voltage Card

Power up to 60 channels

Control Card

- Keeps diagnostic data
 - Running sum data
- Updates abort requirements on state changes

Abort Card

- Reads abort data from Digitizers
- Compares to mask and multiplicity requirement

Crate

- Wiener 6U VME chassis
- Low-noise power supply
- Custom J2 backplane

Status

- Digitizer
 - Extensive standalone testing of prototype
 - Updating design to extend functionality
- Timing Card
 - Testing prototype
- Crate
 - All received.
- Abort and HV Cards
 - Design nearly complete
- Controller
 - Firmware working in simulation
 - Card schematic done

Personnel

- Alan Baumbaugh (PPD/EED)
 - System design, Control card software
- Kelly Knickerbocker (PPD/EED)
 - Timing card, infrastructure
- Craig Drennan (AD/BS)
 - Digitizer
- Marvin Olson (AD/ID)
 - System support
- Cecil Needles (PPD/EED)
 - Digitizer Firmware
- Mike Utes (PPD/EED)
 - Abort Card

- Jonathan Lewis (PPD/CDF)
 - Management
- Stephen Pordes (AD/ID)
 - Wisdom and advice (solicited or otherwise)
- Randy Keup (AD/ID)
 - Applications programs
- Brian Fellenz (AD)
 - HV card
- Jin-Yuan Wu (PPD/EED)
 - Control Card
- Charlie Briegel, Brian Hendricks (AD/Controls)

Schedule

- Beam tests starting soon
 - Can do extensive testing with VME readout before Controller complete
 - Pre-production Digitizer, Controller and Abort card added in June
 - Duplicate BLMs to compare to legacy system
 - Tevatron: 6 at E1
 - Main Injector: 2 at MI60
 - Develop and test software
 - Get operational experience
- July 2005: Preproduction test
- Install crates when old BPM electronics removed
 - Get host CPUs running ASAP

Installation Schedule

- Modules available to install in November
 - Tevatron and MI
- Can install new system without removing old
 - Easy cabling changeover
- Can establish operations with small fraction of channels then move balance of cables

Experience

- Studies with 2-channel digitizer test card
- Understand signals and noise
 - Selected sites in Tevatron, MI and Booster
- Check calibration for Tevatron
 - Old system: $50nA \leftrightarrow 0.84 \text{ Rad/s}$ (1 Rad $\leftrightarrow 60nC$)
 - New system: $50nA \leftrightarrow 56$ counts (20µs bins)
- Explored noise suppression
 - Wide channel-to-channel variation
 - Filters
 - Chokes for common mode
 - Resistor to increase effective integration time
 - Running sums

MI: LM402G full cycle

25 ms/div

Tevatron: LMF0DT

5 ms/div

Proton Injection Loss During Shot Setup 8/22/04

LMF12: Old and New

Losses in F-sector from 120 GeV beamline during stacking

100 ms/div

LMF 12

per div

0.025 R/s

Conclusions

- In past year, we have completed most of the design work for a new BLM readout system
- Improved diagnostics will improve accelerator performance
- Greater flexibility will enable better protection of equipment
- Expected to be online February 2006

Backup Slides

Custom Digitizer Card

4 Loss Monitor Channels

- Dual Charge Integrator (Burr Brown ACF2101)
 - Alternately integrating or being readout and reset
 - Provides continuous measurement
 - 50 kHz maximum sample rate

FPGA

- Controls integrators
- Reads ADCs
- Stores readings (raw measurements)
- Forms three running sums
- Compares readings and sums to programmed thresholds
 - Results sent to Abort Card

Raw data buffers

- Running circular buffer
- Triggered buffer for turn-by-turn studies
- Maximum 15 cards per crate

Other Modules

Timing Card

- Provides synchronous integration clock to digitizers
 - External input Clock reference or internal oscillator
 - Can also be divided (e.g. AA÷2 for MI)
- Time stamp buffer in sync with the digitizers' raw data buffers
- Decoder to receive clock events

Abort Card

- Receives abort info from the digitizer cards, compares against abort masks and multiplicities and makes the abort signals
- One abort input for each time-range from each channel
- Separate decisions for each time-range
 - Independent masks and multiplicity thresholds
- Aborts are formed in < 20 microseconds
- Also transmits abort data on ring-wide serial link

Other Modules, 2

- Controller Card
 - Communicates with other cards on control bus
 - Bus master
 - Isolates Abort functions from outside world
 - FPGA VME slave and control-bus eZ80 access shared memory
 - Stores loss data buffers for running sums and provides to VME
 - Stores BLM thresholds and abort requirements for each machine state
 - Loads parameters into digitizer and abort concentrator cards based on machine state
- Front-end CPU
 - Motorola MVME 2xxx for communication with ACNET
- High Voltage Card
- Wiener VME Chassis with low-noise power supply

Proposed Machine States

Tevatron Operation

- Proton Studies (i.e. uncoalesced batch at 150)
- Proton Injection
- Activate Separators
- Pbar Injection
- Ramp
- Squeeze
- Scraping
- HEP

• F Sector (change mask)

- P2 Beam
- P2 & P3 Beam
- F-Sector Restore

Experiments

- CDF Silicon Biased
- CDF Silicon Off
- D0 Silicon Biased
- D0 Silicon Off

Booster: LM23

MI: LM402G

- •Large common-mode rejection from small choke
- Injection loss shows up cleanly

Worst Case Noise: LM322

Smoothing: LM522F

10 ms/div

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.